第一个无极限
第二个为0
第一个lim x->0 sin(1/x) = lim t->无穷 sin(t)
若极限存在为a不等于0,即当t>t0之后sin(t)=a,则sin(t+pi)=-a 不等于a,所以极限不存在
若极限为0,取t=t0+pi/2,sin(t)=1,所以a不为零
第二个因为|sin(1/x)|
第一个无极限
第二个为0
第一个lim x->0 sin(1/x) = lim t->无穷 sin(t)
若极限存在为a不等于0,即当t>t0之后sin(t)=a,则sin(t+pi)=-a 不等于a,所以极限不存在
若极限为0,取t=t0+pi/2,sin(t)=1,所以a不为零
第二个因为|sin(1/x)|