(I)第n行有n个数,设a27在第n行,则
n(n−1)
2+1≤27≤
n(n+1)
2,
则n=7,且a27为第7行的第6项,
则a27=27+26-1=128+32=160;
(II)依题意,第n行的总和
i
i=1bij=(2n+20)+(2n+21)+…+(2n+2n-1)=(n+1)2n-1,
n
i=1(
i
i=1bij)=b1+b2+…+bn-1+bn=(2×21-1)+(3×22-1)+…+(n×2n-1-1)+[(n+1)2n-1]=[2×21+3×22+…+n×2n-1+(n+1)2n]-n,
2
n
i=1(
i
i=1bij)=[2×22+3×23+…+n×2n+(n+1)2n+1]-2n,
两式相减,并由等比数列前n项和公式得:
n
i=1(
i
i=1bij)=-2×21-[22+23+…+2n]+(n+1)2n+1-n
=n×(2n+1-1).
故答案为:160,n(2n+1-1)