把a代入方程式,得a^3-5a+1=0,则
a^3+1=5a (1),
a^3-5a=-1 (2)
运算过程代入(1),把a^3+1换成5a,
(2a^7+a^5+7a^4-55a^3-14a^2)/(a^3+1)=(2a^7+a^5+7a^4-55a^3-14a^2)/5a (消去a)
=(2a^6+a^4+7a^3-55a^2-14a)/5 (换成多个(a^3+1)形式)
=(2a^6+2a^3+5a^3+a^4+a-55a^2-15a)/5
=(2a^3(a^3+1)+5a^3+a(a^3+1)-55a^2-15a)/5 (公因数提取,)
=(2a^3*5a+5a^3+a*5a-55a^2-15a)/5 (a^3+1换成5a,)
=(10a^4+5a^3+5a^2-55a^2-15a)/5 同项合并,(a^3+1)
=(10a^4+10a+5a^3-50a^2-25a)/5
=(10a(a^3+1)+5a^3-50a^2-25a)/5 (a^3+1换成5a,)
=(10a*5a+5a^3-50a^2-25a)/5
=(50a^2+5a^3 -50a^2-25a)/5 同项合并
=(5a^3-25a)/5 (消去公因数5)
=a^3-5a 代入(2)式
=-1