如果a是方程x^3-5x+1=0的根,则有(2a^7+a^5+7a^4-55a^3-14a^2)/(a^3+1)=
0
0

1个回答

  • 把a代入方程式,得a^3-5a+1=0,则

    a^3+1=5a (1),

    a^3-5a=-1 (2)

    运算过程代入(1),把a^3+1换成5a,

    (2a^7+a^5+7a^4-55a^3-14a^2)/(a^3+1)=(2a^7+a^5+7a^4-55a^3-14a^2)/5a (消去a)

    =(2a^6+a^4+7a^3-55a^2-14a)/5 (换成多个(a^3+1)形式)

    =(2a^6+2a^3+5a^3+a^4+a-55a^2-15a)/5

    =(2a^3(a^3+1)+5a^3+a(a^3+1)-55a^2-15a)/5 (公因数提取,)

    =(2a^3*5a+5a^3+a*5a-55a^2-15a)/5 (a^3+1换成5a,)

    =(10a^4+5a^3+5a^2-55a^2-15a)/5 同项合并,(a^3+1)

    =(10a^4+10a+5a^3-50a^2-25a)/5

    =(10a(a^3+1)+5a^3-50a^2-25a)/5 (a^3+1换成5a,)

    =(10a*5a+5a^3-50a^2-25a)/5

    =(50a^2+5a^3 -50a^2-25a)/5 同项合并

    =(5a^3-25a)/5 (消去公因数5)

    =a^3-5a 代入(2)式

    =-1