令B1D1的中点为E.利用赋值法,令AA1=1.
∵ABCD-A1B1C1D1是正方体,
∴AA1=A1B1=A1D1=1、∠AA1B1=∠AA1D1=∠B1A1D1=90°,
∴AB1=AD1=B1D1=√2.
∵∠B1A1D1=90°、E∈B1D1且B1E=D1E,∴A1E=B1D1/2=√2/2.
∵A1B1=A1D1、E∈B1D1且B1E=D1E,∴A1E⊥B1D1.
∵AB1=AD1、E∈B1D1且B1E=D1E,∴AE⊥B1D1.
由A1E⊥B1D1、AE⊥B1D1,得:∠AEA1=二面角A-B1D1-A1的平面角.
∵ABCD-A1B1C1D1是正方体,∴AA1⊥平面A1B1D1,∴AA1⊥A1E,
∴tan∠AEA1=AA1/A1E=1/(√2/2)=√2.
∴∠AEA1=arctan√2.
∴二面角A-B1D1-A1的大小为arctan√2.