(1) 原方程变为:x^2-(m + 2)x + 2m = p^2-(m + 2)p + 2m,
∴ x^2-p^2-(m + 2)x +(m + 2)p = 0,
(x-p)(x + p)-(m + 2)(x-p)= 0,
即 (x-p)(x + p-m-2)= 0,
∴ x1 = p,x2 = m + 2-p.
(2)
因p和2+m-p为直角三角形两直角边,
则 此三角形面积为
S = (1/2)*p(2+m-p) = -1/2[p - (1+m/2)]^2 + 1/2(1+m/2)^2
由二次函数性质知,当且仅当 p = 1+m/2,即p=2+m-p时,面积取得最大值为 1/2(1+m/2)^2