根据题意,有两种情况:
1.在定义域内f(x)=g(x)只有一个解,即f(x)-g(x)=0只有一个解
所以log4(4^x+1)-1/2x-log4(a*2^x-4/3a)=0
得log4[(4^x+1)/(a*2^x-4/3a)]=1/2x
4^(1/2x)=(4^x+1) / (a*2^x-4/3a)
2^x=[2^(2x)+1] / (a*2^x-4/3a)
(a*2^x-4/3a)*2^x=2^(2x)+1
整理得(a-1)* (2^x)^2 -4/3a*(2^x)-1=0有一个解
当a=1时,-4/3*(2^x)-1=0,得到2^x=-3/40,得a3/4
g(x)=log4(a2^x-4a/3),当a>0时,需使2^x>4/3,即t>4/3;a