设数列{An}的前n项和为Sn,已知A1=1,Sn+1=4An+2 求:(1)设bn=An+1-2An,证明数列{bn}
2个回答
a(n+1)-2an=3•2^(n-1)
两边同时除以2^(n+1)
∴[a(n+1)]/[2^(n+1)]-(an)/(2^n)=3/4
相关问题
设数列{an}的前n项和为Sn且a1=1,Sn+1=4an+2(n属于正整数) (1)设bn=an/2n,求证数列{bn
设各项为正的数列{an}的前n项和为Sn,且满足:2Sn=an•(an+1);数列{bn}满足:bn-bn-1=an-1
设数列{an}的前n项和为Sn,且满足Sn=2-an,n∈N+,数列{bn}满足b1=1,且bn+1=bn+an
已知数列(an),(bn)满足a1=2,an-1=an(an+1-1),bn=an-1.数列(bn)的前n项和为sn
设数列an前n项和为Sn,且an+Sn=1,求an的通项公式 若数列bn满足b1=1且bn+1=bn+an,求数列bn通
数列an的前n项和为Sn,Sn=2an-1,数列bn满足b1=2,bn+1=an+bn.求数列bn的前n项和Tn
已知数列an的前n项和为Sn,且2Sn=2-(2n-1)an设bn=(2n+1)Sn,求数列bn的通项公式
已知数列{an}前N项和为Sn=(2^n+1)减2(1)求an=?(2)设bn=an^2,求数列{bn}的前N项和Tn=
设数列{an}的前n项和为Sn已知a1=a,an+1=Sn+3,n∈N*,设bn=Sn-3^n,求数列{bn}的通项公式
3.设数列{an}的前n项和Sn=2an-4(n∈N+),数列{bn}满足:bn+1=an+2bn,且b1=2.求{bn