f(x)=(cosx)^4-(sinx)^4-2sinxcosx
=[(cosx)^2-(sinx)^2]*[(cosx)^2+(sinx)^2]-2sinxcosx
=(cosx)^2-(sinx)^2-2sinxcosx
=cos2x-sin2x
=√2cos(2x+π/4)
x∈[0,π/2]
则2x+π/4∈[π/4,5π/4]
最大值1 此时2x+π/4=π/4 x=0
最小值-√2 此时2x+π/4=π x=3π/8
f(x)=(cosx)^4-(sinx)^4-2sinxcosx
=[(cosx)^2-(sinx)^2]*[(cosx)^2+(sinx)^2]-2sinxcosx
=(cosx)^2-(sinx)^2-2sinxcosx
=cos2x-sin2x
=√2cos(2x+π/4)
x∈[0,π/2]
则2x+π/4∈[π/4,5π/4]
最大值1 此时2x+π/4=π/4 x=0
最小值-√2 此时2x+π/4=π x=3π/8