令(1-x)/(1+x)=t,则x=(1-t)/(1+t).
f(t)={1-[(1-t)/(1+t)]^2}/{1+[(1-t)/(1+t)]^2}
=[(1+t)^2-(1-t)^2]/[(1+t)^2+(1-t)^2]
=4t/(2+2t^2)
=2t/(1+t^2)
故有f(x)=2x/(1+x^2),(x不=-1)
令(1-x)/(1+x)=t,则x=(1-t)/(1+t).
f(t)={1-[(1-t)/(1+t)]^2}/{1+[(1-t)/(1+t)]^2}
=[(1+t)^2-(1-t)^2]/[(1+t)^2+(1-t)^2]
=4t/(2+2t^2)
=2t/(1+t^2)
故有f(x)=2x/(1+x^2),(x不=-1)