函数f(x)=(x²+ax+b)/(x)是奇函数,则:a=0
此时,f(x)=(x²+b)/(x),因f(1)=2,则:b=1,则:
f(x)=(x²+1)/(x)
先证明:f(x)在(0,1)上递减,在(1,+∞)上递增,则当x>0时,f(x)的值域是[2,+∞)
考虑到函数是奇函数,则这个函数的值域是:(-∞,-2]∪[2,+∞)
函数f(x)=(x²+ax+b)/(x)是奇函数,则:a=0
此时,f(x)=(x²+b)/(x),因f(1)=2,则:b=1,则:
f(x)=(x²+1)/(x)
先证明:f(x)在(0,1)上递减,在(1,+∞)上递增,则当x>0时,f(x)的值域是[2,+∞)
考虑到函数是奇函数,则这个函数的值域是:(-∞,-2]∪[2,+∞)