解题思路:能同时被2、3、5整除的数必须具备:个位上的数是0,各个数位上的数的和能够被3整除;根据此特征,可知要组成的这个四位数的个位上的数一定是0,要保证使这个四位数最小,最高位千位上最小是1,再1+0=1,1再加上那两个数字的和是3的倍数,1+0+2+9=12,是3的倍数,所以要最小百位上应是2,十位上就是9,由此组成的四位数是1290.
根据能被2、3、5整除的数的特征,可知:
这个四位数的个位上的数一定是0,
要保证这个四位数最小,千位上只要是1,
再想1+0+2+9=12,是3的倍数,
所以要最小百位上应是2,十位上就是9,
所以这个四位数是1290;
故答案为:1290.
点评:
本题考点: 找一个数的倍数的方法.
考点点评: 此题考查能被2、3、5整除的数的特征:个位上的数是0,各个数位上的数的和能够被3整除;要注意要求,使此数最小这个条件.