若向量(a,b,c)是空间的一组基底,向量m=a+b,n=a-b,那么可以与m,n构成空间的另一组基底的向量是:A、a
3个回答
选C
因为ab向量无论怎么合成只能表示ab平面内的向量,所以需要不与ab共面的向量表示
相关问题
若向量{a,b,c}是空间的一个基底,向量m =a+b,n=a-b,那么可以与mn构成空间另一个基底的向量是,为何?
向量(a,b,c)是空间的一组基底。(a+ b,a-b,c)是空间的另一组基底。向量P在基底(a, b,c)下的坐标为(
已知向量{a ,b,c}是空间的一个基底,向量{a+b,a-b,c}是空间的另一个基底,一个向量p在基底{a,b,c}下
已知向量{a ,b,c}是空间的一个基底,向量{a+b,a-b,c}是空间的另一个基底,一个向量p在基底{a,b,c}下
已知向量{a ,b,c}是空间的一个基底 向量{a+b,a-b,c}是空间的另一个基底 一个向量p在基底{a,b,c}下
若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是( ) A.a,a+b,a-b B.b,a+b,
已知向量a.b.c是空间应该单位正交基底,向量a+b,a-b,c是空间的另一个基底,若向量p在基底a+b,a-b,c下的
怎么确定基向量已知{a,b,c}是空间向量的一个基底,则可以与向量p=a+b,q=a-b构成基底的向量是( )A,a B
已知{向量a,向量b,向量c}是空间的一个基地,求证:{向量a+向量b,向量a-向量b,向量c}也构成空间的一个基底
若向量a.b.c组成空间的一组基,判断a+b.b+c.c+a能否组成该空间的一组基,