f(x)=sin²x+√3sinxcosx+2cos²x
=(1-cos2x)/2+√3/2sin2x+1+cos2x
=√3/2sin2x+1/2cos2x+3/2
=sin2xcosπ/6+cos2xsinπ/6+3/2
=sin(2x+π/6)+3/2
∵2x+π/6=kπ+π/2
∴x=kπ/2+π/3(k=0,±1,±2,……)
∴函数f(x)=sin²x+√3sinxcosx+2cos²x的最小正周期是π/3
∵-1≤sin(2x+π/6)≤1
∴1/2≤sin(2x+π/6)+3/2≤5/2
即函数f(x)=sin²x+√3sinxcosx+2cos²x的最大值是5/2