a7=a+6d
a10=a+9d
a15=a+14d
a7,a10,a15是等比数列中的连续三项
(a+9d)^2=(a+6d)(a+14d)
a^2+18ad+81d^2=a^2+20ad+84d^2
2ad+3d^2=0
d不等于0
a=-3d/2
a10/a7=(-3d/2+9d)/(-3d/2+6d)=5/3
所以Bn的q=5/3
b2=3*5/3=5
a7=a+6d
a10=a+9d
a15=a+14d
a7,a10,a15是等比数列中的连续三项
(a+9d)^2=(a+6d)(a+14d)
a^2+18ad+81d^2=a^2+20ad+84d^2
2ad+3d^2=0
d不等于0
a=-3d/2
a10/a7=(-3d/2+9d)/(-3d/2+6d)=5/3
所以Bn的q=5/3
b2=3*5/3=5