由已知,椭圆半长轴 a =2,半短轴b=1; A,B坐标为A(-2,0),B(2,0)
直线x=t 与椭圆的交点M,N 坐标为M(t,√(1-t²/4)),N(t,-√(1-t²/4))
过MN的圆,其圆心在MN的垂直平分线上,即x 轴上.
设:
过A、M、N的圆半径为r1,则其圆心坐标为 C1(-2+r1,0);
过B、M、N的圆半径为r2,则其圆心坐标为 C2( 2-r2,0);
圆C1 方程为:
(x+2-r1)² + y² = r1² ---- (1)
圆C2 方程为:
(x-2+r2)² + y² = r2² ---- (2)
M,N在C1,C2上,坐标满足方程(1)(2),代入得:
(t+2-r1)² + 1- t²/4 = r1² ---- (3)
(t-2+r2)² + 1- t²/4 = r2² ---- (4)
整理得:
3t²/4 + (4-2r1)t +(5 - 4r1) = 0 ---- (5)
3t²/4 - (4-2r2)t +(5 - 4r2) = 0 ---- (6)
解得:
r1 = 5/4 + 3t/8;
r2 = 5/4 - 3t/8;
因此:
(1) |C1C2| = |(-2+r1) - (2-r2)| = |-4+(r1+r2)| = 3/2
即 |C1C2|为定值
(2) C1,C2的面积之和为:
S = π*r1² + π*r2²
= π*(9t² + 100)/32
当 -2