(1)证明:∵△=b2-4ac
=[-(k+1)]2-4×(2k-2)
=k2-6k+9
=(k-3)2;
∴△=(k-3)2≥0,
∴无论k取任何实数时,方程总有实数根.
(2)x2-(k+1)x+(2k-2)=0.
(x-2)(x-k+1)=0,
∴x1=2,x2=k-1.
当两⊙O1、⊙O2内切时,k-1-2=5,解得k=8;
当两⊙O1、⊙O2外切时,k-1+2=5,解得k=4.
故k的值为8或4.
(1)证明:∵△=b2-4ac
=[-(k+1)]2-4×(2k-2)
=k2-6k+9
=(k-3)2;
∴△=(k-3)2≥0,
∴无论k取任何实数时,方程总有实数根.
(2)x2-(k+1)x+(2k-2)=0.
(x-2)(x-k+1)=0,
∴x1=2,x2=k-1.
当两⊙O1、⊙O2内切时,k-1-2=5,解得k=8;
当两⊙O1、⊙O2外切时,k-1+2=5,解得k=4.
故k的值为8或4.