证明 1)因 00 ,要使
|a^x| = a^x < ε,
只需 x > lna/lnε,取 X = lna/lnε > 0,则当 x > X 时,
|a^x| = a^x < a^X = a^(lna/lnε) = ε,
根据定义得知
lim(x→+inf.)a^x = 0.
2)对a>1,
lim(x→-inf.)a^x = lim(x→-inf.)(1/a)^(-x) = 0.
证明 1)因 00 ,要使
|a^x| = a^x < ε,
只需 x > lna/lnε,取 X = lna/lnε > 0,则当 x > X 时,
|a^x| = a^x < a^X = a^(lna/lnε) = ε,
根据定义得知
lim(x→+inf.)a^x = 0.
2)对a>1,
lim(x→-inf.)a^x = lim(x→-inf.)(1/a)^(-x) = 0.