(1)证明:∵AF=DC,∴AF+FC=DC+FC,即AC=DF。
∵在△ABC和△DEF中,AC=DF,∠A=∠D,AB=DE,
∴△ABC≌DEF(SAS)。∴BC=EF,∠ACB=∠DFE,∴BC∥EF。
∴四边形BCEF是平行四边形.
(2)连接BE,交CF与点G,
∵四边形BCEF是平行四边形,
∴当BE⊥CF时,四边形BCEF是菱形。
∵∠ABC=90°,AB=4,BC=3,
∴AC=
。
∵∠BGC=∠ABC=90°,∠ACB=∠BCG,∴△ABC∽△BGC。
∴
,即
。∴
。
∵FG=CG,∴FC=2CG=
,
∴AF=AC﹣FC=5﹣
。
∴当AF=
时,四边形BCEF是菱形.
(1)由AB=DE,∠A=∠D,AF=DC,根据SAS得△ABC≌DEF,即可得BC=EF,且BC∥EF,即可判定四边形BCEF是平行四边形。
(2)由四边形BCEF是平行四边形,可得当BE⊥CF时,四边形BCEF是菱形,所以连接BE,交CF与点G,证得△ABC∽△BGC,由相似三角形的对应边成比例,即可求得AF的值。