f(x)+f(1/x)=x/(1+x)+(1/x)/(1+1/x)=(x+1)/(x+1)=1
所以
f(2010分之1)+f(2009分之1)+……+f(2009)+f(2010)
=f(1)+[f(2)+f(1/2)]+……+[f(2010)+f(1/2010)]
=1/2+1+……+1
=1/2+2009
=2009.5
f(x)+f(1/x)=x/(1+x)+(1/x)/(1+1/x)=(x+1)/(x+1)=1
所以
f(2010分之1)+f(2009分之1)+……+f(2009)+f(2010)
=f(1)+[f(2)+f(1/2)]+……+[f(2010)+f(1/2010)]
=1/2+1+……+1
=1/2+2009
=2009.5