解题思路:(1)令x=y=0求出f(0)=0,再令y=-x代入式子化简,结合函数奇偶性的定义,可得f(x)是奇函数;
(2)设x1<x2,结合f(x+y)=f(x)+f(y)可得f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1),由x>0时,有f(x)>0,可得f(x2)>f(x1),证明函数在R上单调递减;
(3)再利用赋值法和条件,分别求出函数最大值和最小值.
(1)令x=y=0,可得f(0)=0,
令y=-x,则f(0)=f(-x)+f(x),
∴f(-x)=-f(x),∴f(x)为奇函数,
(2)设x1<x2,令y=-x1,x=x2
则f(x2-x1)=f(x2)+f(-x1)=f(x2)-f(x1),
因为x>0时,f(x)<0,
故f(x2-x1)<0,即f(x2)-f(x1)<0.
∴f(x2)<f(x1),
∴f(x)在R上单调递减;
(3)f(x)在[-2014,2014]上单调递减,
∴x=-2014时,f(x)有最大值-2014f(1)=4028,
x=2014时,f(x)有最小值为f(2014)=4028.
点评:
本题考点: 函数的最值及其几何意义;函数单调性的判断与证明;函数奇偶性的判断.
考点点评: 本题考查抽象函数的性质,涉及函数奇偶性、单调性的判断,以及函数最值,解此类题目,注意赋值法的运用.