过O作OM⊥AB于M,ON⊥CD于N,连接OA、OC,
则∠OMA=∠ONC=90°,
∵点O是∠EPF的平分线上,
∴OM=ON,
在Rt△AMO和RtONC中,由勾股定理得:AM 2=OA 2-OM 2,CN 2=OC 2-ON 2,
∵OC=OA,
∴AM=CN,
∵OM、ON过O,OM⊥AB,ON⊥CD,
∴AB=2AM,CD=2CN,
∴AB=CD.
过O作OM⊥AB于M,ON⊥CD于N,连接OA、OC,
则∠OMA=∠ONC=90°,
∵点O是∠EPF的平分线上,
∴OM=ON,
在Rt△AMO和RtONC中,由勾股定理得:AM 2=OA 2-OM 2,CN 2=OC 2-ON 2,
∵OC=OA,
∴AM=CN,
∵OM、ON过O,OM⊥AB,ON⊥CD,
∴AB=2AM,CD=2CN,
∴AB=CD.