(1)求导数得f'(x)=(ax²-2bx-a)/(x²+1)²,
由题意,f'(1)=0,得b=0,又f(1)= 2,得a= -4.
(2)当2b=a²-1时,f'(x)=(ax²-2bx-a)/(x²+1)²=[ax²-(a²-1)x-a]/(x²+1)²=[(ax+1)(x-a)]/(x²+1)².
若a=0,则f'(x)=x/(x²+1)²,
当x>0时,f'(x)>0,当x0时,f(x)的单调递增区间为(-∞,-1/a),(a,+∞);单调递减区间为(-1/a,a).
当a
(1)求导数得f'(x)=(ax²-2bx-a)/(x²+1)²,
由题意,f'(1)=0,得b=0,又f(1)= 2,得a= -4.
(2)当2b=a²-1时,f'(x)=(ax²-2bx-a)/(x²+1)²=[ax²-(a²-1)x-a]/(x²+1)²=[(ax+1)(x-a)]/(x²+1)².
若a=0,则f'(x)=x/(x²+1)²,
当x>0时,f'(x)>0,当x0时,f(x)的单调递增区间为(-∞,-1/a),(a,+∞);单调递减区间为(-1/a,a).
当a