在三角形abc中,若sin平方A+sin平方B

1个回答

  • 在三角形ABC中证明(sinA)^2+(sinB)^2+(sinC)^2=2(1+cosAcosBcosC)

    由倍角公式:

    (sinA)^2+(sinB)^2+(sinC)^2

    =(1-cos2A)/2+(1-cos2B)/2+(1-cos2C)/2

    =3/2-1/2(cos2A+cos2B+cos2C) (对cos2A+cos2B用和差化积公式)

    =3/2-1/2(2cos(A+B)cos(A-B)+2(cosC)^2-1)

    =2-(cos(A+B)cos(A-B)+(cosC)^2)

    =2-(-cos(A-B)cosC+(cosC)^2)

    =2-cosC(cosC-cos(A-B)) (再用和差化积公式)

    =2+2cosC[sin (C-A+B)/2*sin (C+A-B)/2]

    =2+2cosC[sin (180-2A)/2*sin (180-2B)/2]

    =2+2cosC[sin(90-A)*sin(90-B)]

    =2+2cosCcosAcosB