y=x/(x-3)^(1/2)
方法1
y'={x'(x-3)^(1/2)-x*[(x-3)^1/2]'}/(x-3)
y'=[(x-3)^1/2-x*1/2*(x-3)^(-1/2)]/(x-3)
y'=[x-3-x/2 * 1]/(x-3)^(3/2)
y'=(x-6)/[2(x-3)^(3/2)]
方法2:
y^2=x^2/(x-3)
两边求导:
2y*y'=(2x(x-3)-x^2)/(x-3)^2
2y'*x/(x-3)^(1/2)=(2x(x-3)-x^2)/(x-3)^2
2y'=(2(x-3)-x)/(x-3)^(3/2)
y'=(x-6)/[2(x-3)^(3/2)]