证明:连接AD
∵AB=AC,∠BAC=90
∴∠B=∠C=45
∵D为BC的中点
∴AD=BD=CD(直角三角形中线特性),AD⊥CD,∠BAD=∠CAD=∠BAC/2=45 (三线合一)
∴∠ADF+∠BDF=90,∠CAD=∠B
∵AE=BF
∴△ADE≌△BDF (SAS)
∴DE=DF,∠ADE=∠BDF
∴∠EDF=∠ADF+∠ADE=∠ADF+∠BDF=90
∴等腰RT△DEF
证明:连接AD
∵AB=AC,∠BAC=90
∴∠B=∠C=45
∵D为BC的中点
∴AD=BD=CD(直角三角形中线特性),AD⊥CD,∠BAD=∠CAD=∠BAC/2=45 (三线合一)
∴∠ADF+∠BDF=90,∠CAD=∠B
∵AE=BF
∴△ADE≌△BDF (SAS)
∴DE=DF,∠ADE=∠BDF
∴∠EDF=∠ADF+∠ADE=∠ADF+∠BDF=90
∴等腰RT△DEF