椭圆的两焦点为F1F2,如果椭圆上存在点P,满足∠F1PF2=90° 试求此椭圆的离心率的取值范围
2个回答
[√2/2,1)
当e=√2/2是,p在上或下顶点,此时为90也是焦点三角形最大的时候,可用余弦定理证明.e越大时椭圆越扁.
相关问题
已知椭圆的两焦点为f1,f2,如果椭圆上存在点P,满足角F1PF2=90°,求椭圆的离心率的取值范围
已知F1,F2是椭圆的两个焦点,P为椭圆上一点,若角F1PF2=90度,求椭圆离心率的取值范围
已知点F1,F2是椭圆的两个焦点.点P在椭圆上,∠F1PF2=60度,求椭圆离心率的取值范围
椭圆的两焦点为F1,F2在椭圆上存在8个点P使得△F1PF2为直角三角形,则椭圆离心率范围是?
已知F1F2是椭圆的两个焦点 p为椭圆上一点 角F1PF2=60 椭圆离心率的取值范围
设椭圆左右焦点为F1 F2,若椭圆上存在点P使∠F1PF2=90,求e的取值范围
椭圆C的两个焦点分别是F1、F2,若C上存在点P满足|PF1|=2|F1F2|,则椭圆C的离心率e的取值范围是( )
F1 F2为椭圆焦点 P为椭圆上任意一点 ∠F1 P F2= 60° 求离心率e取值范围
F1,F2是椭圆的两个焦点,若椭圆上存在点P,使角F1PF2=120°,则离心率
椭圆C的两个焦点分别是F1,F2,若C上的点P满足|PF1|=32|F1F2|,则椭圆C的离心率e的取值范围是( )