延长CE至F使CF=BD;
∵BC=CB,CF=BD
∠OCB=∠OBC,即∠FCB=∠DBC
∴△BCF≌△CBD
∴BF=CD
∵∠BEF=∠EOB+∠EBO=∠OBC+∠OCB+∠EBO=∠A+∠EBO(∠OBC=∠OCB=1/2∠A)
∠BFE=∠BDC=∠A+∠EBO
∴∠BFE=∠BEF
∴BE=BF=CD;
延长CE至F使CF=BD;
∵BC=CB,CF=BD
∠OCB=∠OBC,即∠FCB=∠DBC
∴△BCF≌△CBD
∴BF=CD
∵∠BEF=∠EOB+∠EBO=∠OBC+∠OCB+∠EBO=∠A+∠EBO(∠OBC=∠OCB=1/2∠A)
∠BFE=∠BDC=∠A+∠EBO
∴∠BFE=∠BEF
∴BE=BF=CD;