解题思路:设正三棱柱底面正三角形的边长为a,当球外切于正三棱柱时,球的半径R1等于正三棱柱的底面正三角形的边心距,求出正三棱柱的高为,当正三棱柱外接球时,球的球心是正三棱柱高的中点,且球的圆心与正三棱柱两个底面正三角形构成两个正三棱锥,求出外接球的半径,即可求出内切球与外接球表面积之比.
设正三棱柱底面正三角形的边长为a,
当球外切于正三棱柱时,球的半径R1等于正三棱柱的底面正三角形的边心距
3
6a,R12=
1
12a2,
故正三棱柱的高为
2
3
3a,
当正三棱柱外接球时,球的圆心是正三棱柱高的中点,且球的球心与正三棱柱两个底面正三角形构成两个正三棱锥,R22=(
3
3a)2+(
3
3a)2=
2
3a2,
∴内切球与外接球表面积之比为
1
12a2:
2
3a2=1:8.
故答案为:8:1
点评:
本题考点: 球的体积和表面积.
考点点评: 本题是基础题,考查空间想象能力,分析问题解决问题的能力,是常考题型,求内切球与外接球的半径是本题的关键.