Sn=2×3+3×3^2+……+(n+1)×3^n
3Sn= 2×3^2+3×3^3+……+n×3^n+(n+1)×3^(n+1)
-2Sn=6+3^2+3^3+……+3^n-(n+1)×3^(n+1)
=6+9[3^(n-1)-1]/(3-1)-(n+1)×3^(n+1)
=6+1/2×3^(n+1)-9/2-(n+1)×3^(n+1)
=-(n+1/2)×3^(n+1)+3/2
Sn=(2n+1)/4×3^(n+1)-3/4
=[(2n+1)×3^(n+1)-3]/4
Sn=2×3+3×3^2+……+(n+1)×3^n
3Sn= 2×3^2+3×3^3+……+n×3^n+(n+1)×3^(n+1)
-2Sn=6+3^2+3^3+……+3^n-(n+1)×3^(n+1)
=6+9[3^(n-1)-1]/(3-1)-(n+1)×3^(n+1)
=6+1/2×3^(n+1)-9/2-(n+1)×3^(n+1)
=-(n+1/2)×3^(n+1)+3/2
Sn=(2n+1)/4×3^(n+1)-3/4
=[(2n+1)×3^(n+1)-3]/4