x1+x2=-4,x1x2=-2
(1)原式=(x1+x2)^2-2x1x2=16+4=20
(2)原式=(x1+x2)/x1x2=2
(3)原式=(x1^2+x2^2)/x1^2*x2^2=20/4=5
(4)倒数:从而有1/x1+1/x2=2,1/x1x2=-1/2
从而方程为x^2-2x-1/2=0
(5)AB=|x1-x2|=sqrt[(x1+x2)^2-4x1x2]=sqrt(24)=2sqrt(6)
x1+x2=-4,x1x2=-2
(1)原式=(x1+x2)^2-2x1x2=16+4=20
(2)原式=(x1+x2)/x1x2=2
(3)原式=(x1^2+x2^2)/x1^2*x2^2=20/4=5
(4)倒数:从而有1/x1+1/x2=2,1/x1x2=-1/2
从而方程为x^2-2x-1/2=0
(5)AB=|x1-x2|=sqrt[(x1+x2)^2-4x1x2]=sqrt(24)=2sqrt(6)