证明:∵△ABD和△ACE是等边三角形,
∴AB=AD,AC=AE,∠DAB=∠EAC=60°,
∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,
在△DAC和△BAE中,
AC=AE ;
∠DAC=∠BAE ;
AD=AB ;
∴△DAC≌△BAE(SAS),
∴DC=BE;
证明:∵△ABD和△ACE是等边三角形,
∴AB=AD,AC=AE,∠DAB=∠EAC=60°,
∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,
在△DAC和△BAE中,
AC=AE ;
∠DAC=∠BAE ;
AD=AB ;
∴△DAC≌△BAE(SAS),
∴DC=BE;