m的2次方+2m-1=0
m²+2m-1=0
(m+1)²=2
m+1=±√2
m^3+2m^2+2009
=(m+1)^3-(m^2+3m-2008)
=(m+1)^3-[(m+1)²+m-2009]
=(m+1)^3-[(m+1)²+(m+1)-2010]
=(m+1)(m+1)²-(m+1)²-(m+1)+2010
=2(m+1)-2-(m+1)+2010
=(m+1)+2008
=±√2+2008
=2008±√2
m的2次方+2m-1=0
m²+2m-1=0
(m+1)²=2
m+1=±√2
m^3+2m^2+2009
=(m+1)^3-(m^2+3m-2008)
=(m+1)^3-[(m+1)²+m-2009]
=(m+1)^3-[(m+1)²+(m+1)-2010]
=(m+1)(m+1)²-(m+1)²-(m+1)+2010
=2(m+1)-2-(m+1)+2010
=(m+1)+2008
=±√2+2008
=2008±√2