(2010•湘潭一模)如图,竖直放置的斜面AB的下端与光华圆弧轨道BCD的B端相切,圆弧半径为R,圆心与A、D在同一水平

1个回答

  • 解题思路:(1)由几何知识得知,斜面的倾角等于θ.物体从A点无初速度滑下后,由于克服摩擦力做功,物体在斜面上运动时机械能不断减小,到达的最大高度越来越小,最终在BE圆弧上来回运动,到达B点的速度为零.物体在斜面上运动时摩擦力大小为μ2mgcosθ,总是做负功,滑动摩擦力做的总功与总路程成正比,根据动能定理求解总路程.(2)当物体第一次经过C点时,速度最大,对C点的压力最大,当最后稳定后,物体在B点之下运动时,经过C点时速度最小,物体对C点的压力最小,根据动能定理求出最大速度和最小速度,再由牛顿运动定律求解最大压力和最小压力.

    (1)P滑到B点过程中重力和摩擦力做功,物体的动能增大:

    由几何关系知,P下滑的高度:h=Rcosθ;斜面与水平面的夹角为θ;

    设B点以上的斜面长为s,则:s=

    h

    sinθ=

    R

    tanθ

    由动能定理得:mgh−μmgscosθ=

    1

    2mv2

    联立以上各方程,解得:v=

    2R(gsinθ−μgcosθ)

    tanθ

    到B点与Q发生完全碰撞,由于碰撞的时间短,可以认为碰撞的过程中动量守恒,则:mv=2mv′

    由于克服摩擦力做功,物体在斜面上运动时机械能不断减小,到达的最大高度越来越小,

    最终粘连体在圆弧上角度为2θ范围内做往复运动,故最终粘连体在B点速度为0

    由动能定理:[1/2•2mv′2=μ•2mcosθ•S0

    代入数据解得:S0=

    R(sinθ−μcosθ)

    4μtanθ]

    (2)第一次往返C点时压力最大,设为F1,对于PQ整体,B→C过程机械能守恒:

    [1/2×2mv′2+2mgR(1−cosθ)=

    1

    2×2m

    v2c]…①

    在C点:F1−2mg=2m•

    v2c

    R…②

    代入数据解得:F1=2mg+4mg(1−cosθ)+

    2m

    1

    4×2gR(sinθ−μcosθ)•cotθ=6mg−3mgcosθ−μmg

    cos2θ

    sinθ

    当物体不能冲出B点时,再经过C点时的压力最小,设在C点的最小压力为F2

    2mgR(1−cosθ)=

    1

    2×2m

    v2C1…③

    在C点:F2−2mg=2m•

    v2C2

    R…④

    代入数据解得:F2=6mg-4mgcosθ

    答:(1)粘连体在斜面上运动的路程为S0=

    R(sinθ−μcosθ)

    4μtanθ;

    (2)粘连体通过C点时,对C点的最大压力为6mg−3mgcosθ−μmg

    cos2θ

    sinθ,最小压力为:6mg-4mgcosθ.

    点评:

    本题考点: 动能定理的应用;牛顿第二定律;向心力.

    考点点评: 本题是动能定理与牛顿运动定律的综合应用,关键是分析物体的运动过程,抓住滑动摩擦力做功与路程有关这一特点.

相关问题