f(x)=(1/x)+[1/(1-x)]
=1/x+1/(1-x)
=1/[x(1-x)]
=1/(-x^2+x)
=1/[-(x-1/2)^2+1/4]
因为:
-(x-1/2)^2+1/4在(0,1/2)是增函数,最大值为x=1/2,等式=1/4,最小值为x=0,等式=0
-(x-1/2)^2+1/4在(1/2,1)是减函数,最大值为x=1/2,等式=1/4,最小值为x=1,等式=0
所以f(x)=1/[-(x-1/2)^2+1/4]在(0,1/2)是减函数,最小值为x=1/2,f(x)=4,最大值为x趋于0,f(x)趋于无穷
f(x)=1/[-(x-1/2)^2+1/4]在(1/2,1)是增函数,最小值为x=1/2,f(x)=4,最大值为x趋于1,f(x)趋于无穷
所以f(x)在(0,1/2)是减函数,在(1/2,1)是增函数,值域[4,无穷)