将一把三角尺放在正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与线段DA相交于点

1个回答

  • 一样的题目:

    将一把直角三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角尺的一边始终经过点B,另一边与射线DC相义于点Q.

    (1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到的结论.

    (2)当点P在线段AC上滑动时,三角形PCQ是否可能成为等腰三角形?如果可能,指出所有能使三角形PCQ成为等腰三角形的点Q的位置;如果不可能,试说明理由.

    1.过点P作PM垂直BC于M,作PN垂直CD于N

    (现在证明△BPM和△QPN是全等三角形)

    PM=PN(角平分线上的点到角两边的距离相等)

    ∵∠BPM+∠MPQ=∠QPN+∠MPQ=90度

    ∴∠BPM=∠QPN

    又∵∠BMP=∠QNP=90度

    所以在直角△BPM和直角△QPN中,

    ∵∠BPM=∠QPN,∠BMP=∠QNP,PM=PN

    根据角角边定理得:

    ∴△BPM≌△QPN

    ∴PB=PQ

    ⑵作PT⊥BC,T为垂足(如图5),那么四边形PTCN为正方形,∴PT=CN=PN.

    又∵∠PNQ=∠PTB=90°,PB=PQ

    ∴△PBT≌△PQN

    ∴S四边形PBCQ=S△PBT+S四边形PTCQ

    = S四边形PTCQ+S△PQN=S四边形PTCN

    ⑶△PCQ可能成为等腰三角形.

    点P与点A重合时,点Q与点D重合,这时PQ=QC,△PCQ是等腰三角形,此时,x=0.

    C的延长线上,且CP=CQ时,△PCQ是等腰三角形(如图6).此时,∠CPQ=1/2∠PCN=22.5°,∠APB=90°-22.5°=67.5°,

    ∠ABP=180°-(45°+67.5°)-67.5°,

    ∴∠APB=∠ABP,∴∠AP=AV=1,∴x=1