x^y=y^x
两边取对数
ylnx=xlny
两边对x求导
y'lnx+(y/x)=lny+(x/y)*y'
y'((x/y)-lnx)=(y/x)-lny
y'=[(y/x)-lny]/[(x/y)-lnx]
y'=y[(xlny)-y]/(x[(ylnx)-x])
x^y=y^x
两边取对数
ylnx=xlny
两边对x求导
y'lnx+(y/x)=lny+(x/y)*y'
y'((x/y)-lnx)=(y/x)-lny
y'=[(y/x)-lny]/[(x/y)-lnx]
y'=y[(xlny)-y]/(x[(ylnx)-x])