1.等差数列{an}中,S9 = 18,Sn-4 = 30(n>9).若Sn = 240,求n.

2个回答

  • 1.

    an=a+(n-1)d

    sn=na+n(n-1)d/2

    s9=9a+36d=18,a+4d=2,

    s(n-4)=(n-4)a+(n-4)(n-5)d/2=30

    sn=na+n(n-1)d/2=240,

    sn-s(n-4)=4a+(4n-10)d=240-30=210

    2a+(2n-5)d=105

    2(2-4d)+(2n-5)d=105

    (2n-13)d=101

    d=101/(2n-13)

    a=2-4d=2-404/(2n-13)=(4n-430)/(2n-13)

    s(n-4)=(n-4)a+(n-4)(n-5)d/2

    =(n-4)(4n-430)/(2n-13)+202(n-4)(n-5)/(2n-13)

    =30

    sn=na+n(n-1)d/2

    =n(4n-430)/(2n-13)+202n(n-1)/(2n-13)

    =240

    (n-4)(4n-430)+202(n-4)(n-5)=30(2n-13)

    n(4n-430)+202n(n-1)=240(2n-13)

    206n^2-2770n+5999=0

    206n^2-1112n+3120=0

    无解.

    2.

    设an=a+(n-1)d

    sn=na+n(n-1)d/2

    s10=10a+45d=140

    a+4.5d=14

    s奇=a1+a3+a5+a7+a9=5a+20d=125

    a+4d=25

    d=-22,a=113

    an=113-22(n-1)=-22n+135

    a6=-132+135=3;

    3.若等差数列{an}的前4项和为25,后4项和为63,前n项和为286,求n

    设an=a+(n-1)d

    sn=na+n(n-1)d/2

    s4=4a+6d=25

    sn-s(n-4)=[na+n(n-1)d/2]-[(n-4)a+(n-4)(n-5)d/2]

    =4a+(4n-10)d

    =63

    sn=na+n(n-1)d/2=286

    所以

    4a+6d=25

    4a+(4n-10)d=63

    na+n(n-1)d/2=286

    用a=(25-6d)/4代入:

    (2n-8)d=19

    25n+(2n-8)dn=572

    25n+19n=572

    44n=572

    n=13.