(1)
An+1的平方减An的平方=2 {an平方}为公差为2的等差数列
a1平方为1 an平方=2n-1 an=根号(2n-1)
(2)
由前面知道an=√(2n-1)
所以1/[an+a(n+1)]
=1/[√(2n-1)+√(2n+1)]
=[√(2n+1)-√(2n-1)]/2
所以{1/[an+a(n+1)]}的前n项和是
[(√3-√1)+(√5-√3)+...+√(2n+1)-√(2n-1)]/2
=[√(2n+1)-1]/2
(1)
An+1的平方减An的平方=2 {an平方}为公差为2的等差数列
a1平方为1 an平方=2n-1 an=根号(2n-1)
(2)
由前面知道an=√(2n-1)
所以1/[an+a(n+1)]
=1/[√(2n-1)+√(2n+1)]
=[√(2n+1)-√(2n-1)]/2
所以{1/[an+a(n+1)]}的前n项和是
[(√3-√1)+(√5-√3)+...+√(2n+1)-√(2n-1)]/2
=[√(2n+1)-1]/2