用积分因子法解(x^2+y^2+y)dx-xdy=0

1个回答

  • ∵(x^2+y^2+y)dx-xdy=0

    ==>(x^2+y^2)dx+ydx-xdy=0

    ==>dx+(ydx-xdy)/(x^2+y^2)=0 (等式两端同乘积分因子1/(x^2+y^2))

    ==>dx+[(ydx-xdy)/y^2]/[(x/y)^2+1]=0 (分式分子分母同除y^2)

    ==>dx+d(x/y)/[(x/y)^2+1]=0

    ==>x+arctan(x/y)=C (C是任意常数)

    ∴原方程的通解是x+arctan(x/y)=C.