已知数列{an},a1=1/3,Sn与an关系是Sn=n乘(2n-1)乘an,求{an}的通项公式

1个回答

  • 由 S[n] - S[n-1] = a[n](其中[n]表示下标为n),可以得到

    a[n]

    = a[n-1] × (2n-3) ÷ (2n+1)

    =a[n-2] × (2n-3) × (2n-5) ÷ (2n+1) ÷ (2n-1)

    =a[n-3] × (2n-3) × (2n-5) × (2n-7) ÷ (2n+1)÷ (2n-1) ÷ (2n-3)

    =.(把能约分的都约掉)

    =a[1]×3×1÷ (2n+1)÷ (2n-1) (当n大于等于3的时候)

    =1÷ (2n+1)÷ (2n-1)(当n大于等于3的时候)

    而a[2] = a[1] × (2n-3) ÷ (2n+1) = 1/15,a[1]=1/3都是满足公式 a[n]=1÷ (2n+1)÷ (2n-1)的,故通项公式为

    a[n]=1÷ (2n+1)÷ (2n-1)

    或者,你猜出通项公式为a[n]=1÷ (2n+1)÷ (2n-1) 后,用数学归纳法来证明,也可以.