f(x)=asin2x+btanx +1
f(2)=asin4+btan2+1=5,所以 asin4+btan2=4
f(π-2)=asin2(π-2)+btan(π-2)+1=asin(2π-4)-btan2+1=-(asin4+btan2)+1=-4+1=-3
f(π)=asin2π+btanπ+1=1
从而 f(π-2)+f(π)=-3+1=-2
f(x)=asin2x+btanx +1
f(2)=asin4+btan2+1=5,所以 asin4+btan2=4
f(π-2)=asin2(π-2)+btan(π-2)+1=asin(2π-4)-btan2+1=-(asin4+btan2)+1=-4+1=-3
f(π)=asin2π+btanπ+1=1
从而 f(π-2)+f(π)=-3+1=-2