在平面直角坐标系xOy中,动点P(x,y)到F(0,1)的距离比到直线y=-2的距离小1.

1个回答

  • (Ⅰ)∵动点P(x,y)到F(0,1)的距离比到直线y=-2的距离小1,

    ∴动点P(x,y)到F(0,1)的距离等于它到直线y=-1的距离,

    ∴动点P的轨迹W是以F(0,1)为焦点的抛物线,其方程为x2=4y;

    (Ⅱ)证明:设直线l的方程为y=kx-4,A(x1,y1),B(x2,y2),则A1(-x1,y1),

    y=kx−4

    x2=4y消去y可得x2-4kx+16=0,

    则△=16k2-64>0,即|k|>2,

    x1+x2=4k,x1x2=16.

    直线A1B:y−y2=

    y2−y1

    x2+x1(x−x2),

    ∴y=

    x22−x12

    4(x1+x2)(x−x2)+

    1

    4x22,

    ∴y=

    x2−x1

    4x+

    x1x2

    4,

    ∴y=

    x2−x1

    4x+4,

    ∴直线A1B过点D(0,4),

    ∴A1,D,B三点共线.