(Ⅰ)∵动点P(x,y)到F(0,1)的距离比到直线y=-2的距离小1,
∴动点P(x,y)到F(0,1)的距离等于它到直线y=-1的距离,
∴动点P的轨迹W是以F(0,1)为焦点的抛物线,其方程为x2=4y;
(Ⅱ)证明:设直线l的方程为y=kx-4,A(x1,y1),B(x2,y2),则A1(-x1,y1),
由
y=kx−4
x2=4y消去y可得x2-4kx+16=0,
则△=16k2-64>0,即|k|>2,
x1+x2=4k,x1x2=16.
直线A1B:y−y2=
y2−y1
x2+x1(x−x2),
∴y=
x22−x12
4(x1+x2)(x−x2)+
1
4x22,
∴y=
x2−x1
4x+
x1x2
4,
∴y=
x2−x1
4x+4,
∴直线A1B过点D(0,4),
∴A1,D,B三点共线.