设一个物体从初速度为1时开始做直线运动,已知在任意时刻t时的加速度为(2根号t)+1,试将位移s表示为时间t的函数式

1个回答

  • 列微分方程

    a=dv/dt=(2根号t)+1

    解得:v=(4/3)t根号t+t+C

    因为t=0时,v=1

    所以C=1

    所以v=(4/3)t根号t+t+1

    两边同乘dt得:vdt=[(4/3)t根号t+t+1]dt

    两边积分得s=(8/15)(t^2)根号t+(1/2)t^2+t+C

    因为t=0时,s=0

    所以C=0

    所以s=(8/15)(t^2)根号t+(1/2)t^2+t