1,因式分解法:
2x^2-(√3+1)x+√3/2=0
4x^2-(2√3+2)x+√3=0
(2x-√3)(2x-1)=0
x1=√3/2,x2=1/2
2,公式法:
x=[-b±√(b²-4ac)]/(2a)
={(√3+1)±√[(√3+1)²-4·2·√3/2]}/(2·2)
=[(√3+1)±√ (√3-1)²]/4
=[(√3+1)±(√3-1)]/4
x1=[(√3+1)+(√3-1)]/4=√3/2,x2=[(√3+1)-(√3-1)]/4=1/2
1,因式分解法:
2x^2-(√3+1)x+√3/2=0
4x^2-(2√3+2)x+√3=0
(2x-√3)(2x-1)=0
x1=√3/2,x2=1/2
2,公式法:
x=[-b±√(b²-4ac)]/(2a)
={(√3+1)±√[(√3+1)²-4·2·√3/2]}/(2·2)
=[(√3+1)±√ (√3-1)²]/4
=[(√3+1)±(√3-1)]/4
x1=[(√3+1)+(√3-1)]/4=√3/2,x2=[(√3+1)-(√3-1)]/4=1/2