如图⊙O与⊙O′相交于A,B两点,且⊙O′过⊙O的圆心,直线OO′交⊙O于C,D两点,交⊙O′于点P,AB与OO′交于

2个回答

  • 证明:

    (1)连接AO,△PAO为Rt△,该三角形内有AE²=PE·EO.由于PD⊥AB,所以PA²=PE²+AE².又PE·PO=PE·(PE+EO)=PE²+PE·PO=PE²+AE²,故有PA²=PE·PO,证毕.

    (2)由相交弦定理,AE·BE=AE²=CE·ED,而AE²=PE·EO,所以PE·EO=CE·ED,证毕

    (3)在Rt△PAO里,PO=2R,AO=r,AE为高,解得EO=2R/r².代入PA=4R²-r²,PD=(2R+r)²,CE=r-EO,ED=r+EO,容易证明PA²/PD²=CE/ED