an,Sn,Sn-1/2成等比数列:
Sn^2=an(Sn-1/2)=[Sn-S(n-1)](Sn-1/2)=Sn^2-1/2Sn-S(n-1)Sn+1/2S(n-1)
Sn+2SnS(n-1)-S(n-1)=0
二边同除以:SnS(n-1):
1/S(n-1)+2-1/Sn=0
即:1/Sn-1/S(n-1)=2
即数列{1/Sn}是一个公差是2的等差数列,首项:1/S1=a1=1
所以:1/Sn=1/S1+(n-1)*2=1+2n-2=2n-1
那么:Sn=1/(2n-1)
an=Sn-S(n-1)=1/(2n-1)-1/[2(n-1)-1]=1/(2n-1)-1/(2n-3)=-2/[(2n-1)(2n-3)]