证明:
①对于任意x∈S,有x=1-1/2^n0,存在x=1-1/2^([log2(1/e)]+1) [x]是求整函数
使得x-1-e=-1/2^([log2(1/e)]+1)-e
>-1/2^(log2(1/e))-e
=e-e
=0
即x>1-e
综上所述,supS=1
同理,①对于任意x∈S,有x=1-1/2^n>=1-1/2=1/2
②对于任意e>0,存在x=1-1/2=1/2
使得x-1/2-e=1/2-1/2-e=-e
证明:
①对于任意x∈S,有x=1-1/2^n0,存在x=1-1/2^([log2(1/e)]+1) [x]是求整函数
使得x-1-e=-1/2^([log2(1/e)]+1)-e
>-1/2^(log2(1/e))-e
=e-e
=0
即x>1-e
综上所述,supS=1
同理,①对于任意x∈S,有x=1-1/2^n>=1-1/2=1/2
②对于任意e>0,存在x=1-1/2=1/2
使得x-1/2-e=1/2-1/2-e=-e