解题思路:首先求出定义域为R,关于原点对称,然后判断f(-x)与f(x)的关系.
f(x)的定义域为R,关于原点对称,
又f(-x)=|-x+2|-|-x-2|=|x-2|-|x+2|=-f(x),
∴f(x)=|x+2|-|x-2|是奇函数.
点评:
本题考点: 函数奇偶性的判断.
考点点评: 本题考查了函数奇偶性的判定;①判断函数的定义域是否关于原点对称;②如果不对称是非奇非偶的函数;如果对称,再利用定义判断f(-x)与f(x)的关系.
解题思路:首先求出定义域为R,关于原点对称,然后判断f(-x)与f(x)的关系.
f(x)的定义域为R,关于原点对称,
又f(-x)=|-x+2|-|-x-2|=|x-2|-|x+2|=-f(x),
∴f(x)=|x+2|-|x-2|是奇函数.
点评:
本题考点: 函数奇偶性的判断.
考点点评: 本题考查了函数奇偶性的判定;①判断函数的定义域是否关于原点对称;②如果不对称是非奇非偶的函数;如果对称,再利用定义判断f(-x)与f(x)的关系.