该函数是奇函数.f(0)=0 x→+∞时f(x)→0
f'(x)=[(3x^2-1)(x^2+1)-(4x^4-4x^2)]/(x^2+1)
令f'(x)=0得:x^4-6^2+1=0
解得:x1^2=3+2√2 或x2^2=3-2√2
f(x1)=f[√(3+2√2)]=[√(6+4√2)]/2
︱f(x1)︱>︱f(x2)︱
考虑到函数的奇偶性.
∴函数的值域为:[-[√(6+4√2)]/2,[√(6+4√2)]/2]
该函数是奇函数.f(0)=0 x→+∞时f(x)→0
f'(x)=[(3x^2-1)(x^2+1)-(4x^4-4x^2)]/(x^2+1)
令f'(x)=0得:x^4-6^2+1=0
解得:x1^2=3+2√2 或x2^2=3-2√2
f(x1)=f[√(3+2√2)]=[√(6+4√2)]/2
︱f(x1)︱>︱f(x2)︱
考虑到函数的奇偶性.
∴函数的值域为:[-[√(6+4√2)]/2,[√(6+4√2)]/2]