3种
(1)证明:在△A B C的外部以C A 为边作∠A C E =∠A.延长BC至点D .
则 C E∥B A ﹙内错角相等,两直线平行﹚
∴ ∠D C E =∠B ﹙两直线平行,同位角相等﹚
∵ ∠B C A +∠A C E +∠E C D =180°﹙平角定义﹚
∴ ∠B C A +∠A +∠B = 180° ﹙ 等量代换﹚
(2)证明:延长B C至点D ,过点C作C E∥BA.
则∠ A =∠A C E ﹙两直线平行,内错角相等﹚
∠ B =∠E C D ﹙两直线平行,同位角相等﹚
∵ ∠ B C A +∠A C E +∠E C D =180° ﹙平角定义﹚
∴ ∠B C A +∠A +∠B = 180° ﹙ 等量代换﹚
(3)证明:过点A 作E F∥B C.
∴ ∠E A B =∠B,
∠F A C = ∠C ﹙两直线平行,内错角相等.﹚
∵∠E A B +∠B A C +∠C A F =180° ﹙ 平角定义﹚
∴ ∠B +∠B A C +∠C= 180° .﹙ 等量代换﹚